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Near Optimum Error Correcting 
Coding And Decoding: Turbo-Codes 

Claude Berrou, Member, IEEE, and Alain Glavieux 

Absfruct- This paper presents a new family of convolutional 
codes, nicknamed turbo-codes, built from a particular concate- 
nation of two recursive systematic codes, linked together by 
nonuniform interleaving. Decoding calls on iterative processing 
in which each component decoder takes advantage of the work 
of the other at the previous step, with the aid of the original con- 
cept of extrinsic information. For sufficiently large interleaving 
sizes, the correcting performance of turbo-codes, investigated by 
simulation, appears to be close to the theoretical limit predicted 
by Shannon. 

I. INTRODUCTION 

ONVOLUTIONAL error correcting or channel coding C has become widespread in the design of digital transmis- 
sion systems. One major reason for this is the possibility of 
achieving real-time decoding without noticeable information 
losses thanks to the well-known soft-input Viterbi algorithm 
[I]. Moreover, the same decoder may serve for various coding 
rates by means of puncturing [2], allowing the same silicon 
product to be used in different applications. Two kinds of 
convolutional codes are of practical interest: nonsystematic 
convolutional (NSC) and recursive systematic convolutional 

’ (RSC) codes. Though RSC codes have the same free distance 
df as NSC codes and exhibit better performance at low signal 
to noise ratios (SNR’s) and/or when punctured, only NSC 
codes have actually been considered for channel coding, except 
in Trellis-coded modulation (TCM) [3]. Section I1 presents the 
principle and the performance of RSC codes, which are at the 
root of the study expounded in this article. 

For a given rate, the error-correcting power of convolutional 
codes, measured as the coding gain at a certain binary error rate 
(BER) in comparison with the uncoded transmission, grows 
more or less linearly with code memory 7). Fig. 1 (from [4]) 
shows the achievable coding gains for different rates, and 
corresponding bandwidth expansion rates, by using classical 
NSC codes with L/ = 2, 4, 6 and 8, for a BER of For 
instance, with R = 1/2, each unit added to I/ adds about 0.5 
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Coding gains at BER equal to l o p G ,  achievable Fig. 1.  
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Rate (dB) 

with NSC codes 
(three-bit quan&&m, from 141, and maximum possible gains for 1/2, 2/3, 
314, and 4/5 rates in a Gaussian channel, with quaternary phase shift keying 
(QPSK) modulation. 

dB more to the coding gain, up to v = 6; for v = 8. the 
additional gain is lower. Unfortunately, the complexity of the 
decoder is not a linear function of v and it grows exponentially 
as 7) . 2”.  Factor 2 represents the number of states processed 
by the decoder and the multiplying factor 71 accounts for the 
complexity of the memory part (metrics and survivor memory). 
Other technical limitations like the interconnection constraint 
in the silicon decoder lay-out, make the value of six a practical 
upper limit for 71 for most applications, especially for high 
data rates. 

In order to obtain high coding gains with moderate decoding 
complexity, concatenation has proved to be an attractive 
scheme. Classically, concatenation has consisted in cascading 
a block code (the outer code, typically a Reed-Solomon code) 
and a convolutional code (the inner code) in a serial structure. 
Another concatenated code, which has been given the familiar 
name of turbo-code, with an original parallel organization of 
two RSC elementary codes, is described in Section 111. Some 
comments about the distance properties of this composite 
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code, are propounded. When decoded by an iterative process, 
turbo-codes offer near optimum performance. The way to 
achieve this decoding with the Maximum A Posteriori (MAP) 
algorithm is detailed in Sections IV, V, VI, and some basic 
results are given in Section VII. 

11. RECURSIVE SYSTEMATIC CONVOLUTIONAL CODES 

A. Introduction 

Consider a binary rate R = 112 convolutional encoder with 
constraint length K and memory 71 = K - 1. The input to 
the encoder at time k is a bit d k  and the corresponding binary 
couple (XI ,  , Yk) is equal to 

1=O 

where GI: { g I L } ,  G2: ( 9 2 % )  are the two encoder generators, 
expressed in octal form. It is well known that the BER 
of a classical NSC code is lower than that of a classical 
nonrecursive systematic convolutional code with the same 
memory u at large SNR’s, since its free distance is smaller 
than that of a NSC code [ 5 ] .  At low SNR’s, it is in general the 
other way round. The RSC code, presented below, combines 
the properties of NSC and systematic codes. In particular, it 
can be better than the equivalent NSC code, at any SNR, for 
code rates larger than 2/3. 

A binary rate RSC code is obtained from a NSC code by 
using a feedback loop and setting one of the two outputs Xk 
or Yk equal to the input bit d k .  The shift register (memory) 
input is no longer the bit d k  but is a new binary variable ak.  
If X I ,  = d k  (respectively, Yk = d k ) ,  the output Y k  (resp. X I , )  
is defined by (lb) [respectively, (la)] by substituting d k  for 
ak and variable ak is recursively calculated as 

v 

i=l 

where yi is respectively equal to g l i  if X I ,  = d k  and to g2i if 
Y k  = d k .  Equation (2) can be rewritten as 

U 

d k  = Y ~ u ~ - , L .  (3) 
i=O 

Taking into account X I ,  = d ~ ,  or Y k  = d k ,  the RSC encoder 
output CI, = ( X I , ,  Y k )  has exactly the same expression as the 
NSC encoder outputs if 910 = g20 = 1 and by substituting d k  

for UI, in (la) or (lb). 
Two RSC encoders with memory u = 2 and rate R = 1/2 ,  

obtained from a NSC encoder defined by generators G1 = 
7,G2 = 5 ,  are depicted in Fig. 2. 

Generally, we assume that the input bit d k  takes values zero 
or one with the same probability. From (2), we can show that 
variable UI, exhibits the same statistical property 

Pr{ak = O/ak-, = E,, . . . I%k-,L = ~ i , .  t .  u k P l  = E ~ }  

= Pr{& = E }  = 1 2 (4) 

I , n k  

t 

d k  

. 
(b) 

Fig. 2. 
with memory v = 2,  rate X = 1 / 2  and generators G I  = 7; Gz = 5 .  

Two associated Recursive systematic convolutional (RSC) encoders 

where E is equal to 

v 

E = 1 T1F?;  E1 = 0 , l .  (5 )  
I=1 

Thus, the transition state probabilities  SI, = m/SkPl = 
m’), where SI, = m and S k - 1  = m’ are, respectively, the 
encoder state at time k and at time ( k  - 1). are identical for 
the equivalent RSC and NSC codes; moreover these two codes 
have the same free distance d f .  However, for a same input 
sequence { d k } ,  the two output sequences {X,} and {YI,} are 
different for RSC and NSC codes. 

When puncturing is considered, some output bits XI, or YI, 
are deleted according to a chosen perforation pattem defined 
by a matrix P .  For instance, starting from a rate R = 1/2 
code, the matrix P of rate 213 punctured code can be equal to 

P =  [; ;]. 
For the punctured RSC code, bit d k  must be emitted at each 
time k .  This is obviously done if all the elements belonging 
to the first or second row of matrix P are equal to one. When 
the best perforation pattem for a punctured NSC code is such 
that matrix P has null elements in the first and the second 
rows, the punctured recursive convolutional code is no longer 
systematic. In order to use the same matrix P for both RSC 
and NSC codes, the RSC encoder is now defined by (3), (7), 
and (8) 

i=O 
X k  = d k  
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where coefficients y2. [see (3)] and A, are, respectively, equal 
to 91% and ,9zz when element P I , ;  1 5 j 5 n of matrix P is 
equal to one and to .qze and ,917 when p l g  is equal to zero. 

B. Recursive Systematic Code Pe$ormance 

In order to compare the performance of RSC and NSC 
codes, we determined their weight spectrum and their BER. 
The weight spectrum of a code is made up of two sets 
of coefficients a ( d )  and W(d)  obtained from two series 
expansions related to the code transfer function T ( D ,  N )  [6] 

30 

T ( D ,  N )  /v&l = a(d)D” (9) 
d X d /  

d=d 

where df is the free distance of the code, a ( d )  is the number 
of paths at Hamming distance d from the “null” path and 
W(d)  is the total Hamming weight of input sequences { d k }  

used to generate all paths at distance d from the “null” path. 
In general, it is not easy to calculate the transfer function 
of a punctured code, that is why the first coefficients a ( d )  
and W(d)  are directly obtained from the trellis by using an 
algorithm derived from [7]. From coefficients W ( d ) ,  a tight 
upper bound of error probability can be calculated for large 
SNR’s [6] 

00 

r e  5 W ( W ( 4 .  (1 1 )  
d=d1 

For a memoryless Gaussian channel with binary modulation 
(PSK, QPSK), probability P(d)  is equal to 

P(d)  = I 2 erfc [ ,,E4 
where EblNO is the energy per information bit to noise power 
spectral density ratio and R is the code rate. 

In [SI, a large number of RSC codes have been investigated 
and their performance was compared to that of NSC codes, 
in term of weight spectrum and of BER. Coefficients a ( d )  
are the same for RSC and NSC codes but the coefficients 
{Wnsc(d)} of RSC codes have a tendency to increase more 
slowly in function of d than the coefficients { W p ~ s ~ ( d ) }  of 
NSC codes, whatever the rate R and whatever the memory 
71. Thus, at low SNR’s, the BER of the RSC code is always 
smaller than the BER of the equivalent NSC code. 

In general, for rates R 5 213, the first coefficients 
( W n ~ ~ ( d f ) ) .  W&c(df + I)) are larger than those of NSC 
codes, therefore, at large SNR’s, the performance of NSC 
codes is a little better than that of RSC codes. When the 
rate is larger than 213, it is easy to find RSC codes whose 
performance is better than that of NSC codes at any SNR. 

In order to illustrate the performance of RSC codes, the 
BER of RSC and NSC codes are plotted in Fig. 3 for different 
values of R and for an encoder with memory u = 6 and 
generators 133, 171. For instance, at P, = 10W1, the coding 
gain with this RSC code, relative to the equivalent NSC code, 
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Rg. 3. 
and memory I /  = 6, generators GI = 133,Ga = 171 

P, of punctured RSC and NSC codes for different valuea of rate R 

is approximately 0.8 dB at R = 213, whereas at R = 314, 
it reaches 1.75 dB. 

111. PARALLEL CONCATENATION WITH NON 
UNIFORM INTERLEAVING: TURBO-CODE 

A. Construction of the Code 

The use of systematic codes enables the construction of 
a concatenated encoder in the form given in Fig. 4, called 
parallel concatenation. The data flow ( d k  at time k )  goes 
directly to a first elementary RSC encoder C1 and after 
interleaving, it feeds (dn at time k )  a second elementary 
RSC encoder C,. These two encoders are not necessarily 
identical. Data d k  is systematically transmitted as symbol 
Xk: and redundancies Y I ~  and Y 2 k  produced by C1 and C, 
may be completely transmitted for an R = 113 encoding or 
punctured for higher rates. The two elementary coding rates 
R1 and Rz associated with C1 and Ca, after puncturing, may 
be different, but for the best decoding performance, they will 
satisfyR1 5 Rz. The global rate R of the composite code, R1 

and R2 are linked by 

(13) 
1 1 1  
- =-+--I. 
R Ri R2 

Unlike the classical (serial) concatenation, parallel concate- 
nation enables the elementary encoders, and therefore the 
associated elementary decoders, to run with the same clock. 
This point constitutes an important simplification for the 
design of the associated circuits, in a concatenated scheme. 
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data dk 
” 0 

RSC code C 1 k1G: 
uniform I inter- 1 redundancy 

leaving 

RSC code C 2 

Fig. 4. Basic turbo-encoder (rate 1/3). 

B. Distance Properties 

Consider for instance elementary codes C1 and C2 with 
memory I/ = 4 and encoder polynomials GI = 23,Gz = 35. 
Redundancy Y k  is one time every second time, either Y I k  or 
Y 2 k .  Then the global rate is R = 112 with R1 = R2 = 
213. The code being linear, the distance properties will be 
considered relatively to the “all zero” or “null” sequence. Both 
encoders C1, Cz and the interleaver are initialized to the “all 
zero” state and a sequence { d k }  containing w “l”s, is fed to 
the turbo-encoder. w is called the input weight. 

Some definitions: let us call a Finite Codeword (FC) of 
an elementary RSC encoder an output sequence with a finite 
distance from the “all zero” sequence (i.e., a limited number 
of “1”s in output sequences {X,} and { Y k } ) .  Because of 
recursivity, only some input sequences, fitting with the linear 
feedback register (LFR) generation of Y k ,  give FC’s. These 
particular input sequences are named FC (input) patterns. Let 
us also call a global FC an output sequence of the turbo-code, 
with a finite distance from the “all zero” sequence (i.e., a 
limited number of “1”s in output sequences { X k } ,  { Y l k }  and 
{ Y 2 k } ) .  The distance dq(w)  of an elementary FC ( q  = 1 for 
C1, q = 2 for C2), associated with an input sequence { d k }  

with weight w ,  is the sum of the two contributions of {Xk} 
and { y q k }  

(14) d,(w) = d X q ( W )  + d Y q ( W ) .  

d,(w) = w + duq(w).  

d ( w )  = w + d Y 1 ( W )  + d Y 2 ( W ) .  

Since the codes are systematic, dxq(w)  = w 

(15) 

The distance d(w)  of a global FC is given likewise by 

(16) 

1) Uniform Interleaving: Consider a uniform block inter- 
leaving using an M . M square matrix with M large enough 
(Le., >32), and generally a power of 2. Data are written 
linewise and read columnwise. As explained above, the matrix 
is filled with “0’s except for some “1”s and we are now going 
to state some of the possible patterns of “1”s leading to global 
FC’s and evaluate their associated distances. Beforehand, note 
that, for each elementary code, the minimal value for input 
weight w is two, because of their recursive structure. For the 
particular case of w = 2, the delay between the two data 

at “1” is 15 or a multiple of 15, since the LFR associated 
with the redundancy generation, with polynomial G = 23, is 
a maximum length LFR. If the delay is not a multiple of 15, 
then the associated sequence { Y k }  will contain “0’s and “1”s 
indefinitely. 

Global FC’s with Input Weight w = 2 

Global FC’s with w = 2 have to be FC’s with input weight 
w = 2 for each of the constituent codes. Then the two data at 
“1” in the interleaving memory must be located at places which 
are distant by a multiple of 15, when both writing and reading. 
For lack of an extensive analysis of the possible patterns which 
satisfy this double constraint, let us consider only the case 
where the two “1”s in { d k }  are time-separated by the lowest 
value (i. e. 15). It is also a FC pattern for code C2 if the two 
data at “1” are memorized on a single line, when writing in the 
interleaving memory, and thus the span between the two “1”s 
is 15 . M ,  when reading. From (16), the distance associated 
with this input pattern is approximately equal to 

d(2 )  N 2 + min(dyl(2)) + INT((15 e M + 1)/4) 

= 2 + 4 + I N T ( ( l S . M +  1)/4) (17) 

where INT(.) stands for integer part of (.). The first term 
represents input weight w ,  the second term the distance added 
by redundancy Y 1  of G 1  (rate 2/3), the third term the distance 
added by redundancy Yz. The latter is given assuming that, 
for this second 2/3 rate code, the (15 . M + 1)/2 Y2 symbols 
are at “l”, one out of two times statistically, which explains 
the additional division by 2. With M = 64 for instance, the 
distance is d ( 2 )  M 246. This value is for a particular case of a 
pattern of two “1”s but we imagine it is a realistic example for 
all FC’s with input weight 2. If the two “1”s are not located 
on a single line when writing in the interleaving matrix, and 
if M is larger than 30, the span between the two “l”s, when 
reading from the interleaving matrix, is higher than 15 M and 
the last term in (17) is increased. 

Global FC’s with w = 3 

Global FC’s with input weight w = 3 have to be elementary 
FC’s with input weight w = 3 for each of the constituent 
codes, The inventory of the patterns with three “1”s which 
satisfy this double constraint is not easy to make. It is not easier 
to give the slightest example. Nevertheless, we can consider 
that associated distances are similar to the case of input weight 
two codewords, because the FC for C2 is still several times 
M long. 

Global FC’s with w = 4 
Here is the first pattem of a global FC which can be viewed 

as the separate combination of two minimal (input weight 
w = 2) elementary FC patterns both for C1 and C,. When 
writing in the interleaving memory, the four data at “I” are 
located at the four corners of a square or a rectangle, the 
sides of which have lengths equal to 15 or a multiple of 15 
[Fig. 5(a)]. The minimum distance is given by a square pattem, 
with side length equal to 15, corresponding to minimum values 
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Interleaving matrix 

1000.. ....... .oo 1 
0 0 
0 0 

of 15 

0 
0 

1000.. ....... .oo 1 

multiple 
of 15 

(a) 

Interleaving matrix 

dy, =I  ...... 1 0 0 1 1 
0 0 0 0 0  
0 0 0 0 0  
1 0 0 1 1  
1 0 0 1  1 

x 3 lines 

(b) 

Fig. 5. 
(b) Input pattern for a global FC with ZL’ = 9 and total distance of 15. 

(a) Input pattern for separable global FC’s with input weight tc‘ = 4. 

of dy1(2) and d 1 ~ 2 ( 2 )  

Global FC’s with w > 4 

As previously, one has to distinguish between cases where 
the global FC is separable into two, or more, elementary FC’s 
for both codes, or not. The shortest distances are given by 
separable codewords (this occurs for weights 6, 8, 9, 10, 
12, . .  .). We made an exhaustive research of possible patterns 
up to w = 10 and found a minimum distance of 15 for the 
pattern given in Fig. 5(b), with w = 9, which corresponds to 
three separable FC’s for each of the two codes, and the six 
FC’s having d y l  or d ~ 2  equal to 1. 

To conclude this review of the global FC’s with the lowest 
values of we can retain the result obtained for the case in 

Fig. 5(b) as the minimum distance d, of this particular turbo- 
code (v = 4, polynomials 23, 35, R1 = R2 = 2 / 3 ) .  Other 
codes were considered with different values of v and various 
polynomials; in all cases, the minimum distance seems to 
correspond to input sequences with weights 4, 6, or 9. The 
values of d, are within 10 and 20, which is not a remarkable 
property. So as to obtain larger values of d,: turbo-coding 
employs nonuniform interleaving. 

2) Nonuniform interleaving: It is obvious that patterns giv- 
ing the shortest distances, such as those represented in Fig. 5 ,  
can be “broken” by appropriate nonuniform interleaving, in 
order to transform a separable FC pattern into either a nonsep- 
arable or a non FC. Nonuniform interleaving must satisfy two 
main conditions: the maximum scattering of data, as in usual 
interleaving, and the maximum disorder in the interleaved data 
sequence. The latter, which may be in conflict with the former, 
is to make redundancy generation by the two encoders as 
diverse as possible. In this case, if the decision by the decoder 
associated with C1 about particular data implies a few items of 
redundancy Yl , then the corresponding decision by the decoder 
associated with C, will rely on a large number of values Yz, 
and vice-versa. Then, the minimum distance of the turbo-code 
may be increased to much larger values than that given by 
uniform interleaving. 

The mathematical aspects of nonuniform interleaving are 
not trivial and have still to be studied. For instance, how 
can it be ensured that an interleaver, able to “break” patterns 
corresponding to w = 4 , 6 ,  or 9, will not drastically lower the 
distance for a particular case of a w = 2 input sequence? 
On the other hand, the interleaving equations have to be 
limited in complexity for silicon applications, because several 
interleavers and de-interleavers have to be employed in a real- 
time turbo-decoder (see Section VI-A). However that may 
be, as we have tried to explain up to now, one important 
property of the turbo-code is that its minimum distance d,, 
is not fixed, chiefly, by the constituent RSC codes but by the 
interleaving function; and finding out the optimum interleaver 
for turbo-codes remains a real challenge. 

For the results which are presented in Section VII, we used 
an empirical approach and chose an interleaving procedure in 
which, for reading, the column index is a function of the line 
index. Let i and j be the addresses of line and column for 
writing, and i ,  and j ,  the addresses of line and column for 
reading. For an M . M memory ( M  being a power of two), 
i ,  , j ,  a, and j ,  have values between 0 and M - 1. Nonuniform 
interleaving may be described by 

i ,  = ( M / 2  + l ) ( i  + j )  

E = ( i  +d 
mod . M 
m o d .  8 

j ,  = [P(<) ( j  + I)] - 1 mod . M (19) 

P( .) is a number, relatively prime with M ,  which is a function 
of line address ( i  + j )  mod 4. Note that reading is performed 
diagonally in order to avoid possible effects of a relation 
between M and the period of puncturing. A multiplying factor 
( M / 2  + 1) is used to prevent two neighboring data written on 
two consecutive lines from remaining neighbors in reading, in 
a similar way as given in [SI. 
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2 

DEMUW 
INSERTION 

Fig. 6. 
scheme. 

Principle of the decoder in accordance with a serial concatenation 

IV. DECODING TURBO-CODES 

The decoder depicted in Fig. 6, is made up of two elemen- 
tary decoders (DEC1 and DECz) in a serial concatenation 
scheme. The first elementary decoder DEC1 is associated 
with the lower rate R1 encoder C1 and yields a weighted 
decision. 

For a discrete memoryless Gaussian channel and a binary 
modulation, the decoder input is made up of a couple RI, of 
two random variables xk and YI,, at time k 

Z k  = (2XI,  - I) + iI, 
Y k  = (2Yk - 1) + q k  (201 

where i k  and q k  are two independent noises with the same 
variance g'. The redundant information y k  is demultiplexed 
and sent to decoder DECl when Yr: = Y1k and toward decoder 
DEC2 when YI, = Y 2 k .  When the redundant information of 
a given encoder (C1 or C,) is not emitted, the corresponding 
decoder input is set to analog zero. This is performed by the 
DEMUWINSERTION block. 

The logarithm of likelihood ratio (LLR), AI ( d k )  associated 
with each decoded bit dk by the first decoder DECl can be 
used as a relevant piece of information for the second decoder 
DEC2 

Pr{dk = l/observation} 
Pr{& = O/obscrvation} A i ( d k )  log (21) 

where Pr{dr: = i/observation), i = 0 ,1  is the a posteriori 
probability (APP) of the bit d k .  

A. Optimal Decoding of RSC Codes with Weighted Decision 

The VITERBI algorithm is an optimal decoding method 
which minimizes the probability of sequence error for con- 
volutional codes. Unfortunately, this algorithm is not able 
to yield directly the APP for each decoded bit. A relevant 

algorithm for this purpose has been proposed by BAHL et 
al. [lo]. This algorithm minimizes the bit error probability in 
decoding linear block and convolutional codes and yields the 
APP for each decoded bit. For RSC codes, the BAHL et al. 
algorithm must be modified in order to take into account their 
recursive character. 

Mod$ed BAHL et al. Algorithm for RSC Codes: Consider 
an RSC code with constraint length K ;  at time IC the encoder 
state SI, is represented by a K-uple 

Let us also suppose that the information bit sequence { d k }  is 
made up of N independent bits d k  , taking values zero and one 
with equal probability and that the encoder initial state So and 
final state SN are both equal to zero, i.e 

so = SN = (0,O ........ 0) = 0.  (23) 

The encoder output codeword sequence, noted Cy = 
{C l.......Ck........CN } where CI, = ( X I , , Y I , )  is the input to 
a discrete Gaussian memoryless channel whose output is the 
sequence RT = (Rl.......Rk........RN) where RI, = (x~,,yk) 
is defined by (20). 

The APP of a decoded bit d k  can be derived from the joint 
probability XZ, (m)  defined by 

x;(m) = Pr{dk = i , ~ k  = m / @ }  (24) 

and thus, the APP of a decoded bit dr: is equal to 

Pr{dk = i/RY} = Xi(m), i = 0 , l .  (25) 
m 

From (21) and (24), the LLR A(&) associated with a decoded 
bit d k  can be written as 

m 

Finally the decoder can make a decision by comparing A(&) 
to a threshold equal to zero 

dk. = 1  if A(&) 2 0 

dk. = O  if A(&) < 0. (27) 

From the definition (24) of Xi(m), the LLR A(dk) can be 
written as shown at the bottom of the page. 
Using the BAYES rule and taking into account that events 
after time k are not influenced by observation R: and bit d k  

Pr{dk = 1, SI, = m; S k - 1  = m', Rt-', RI,, Rr+J,,} 
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if state SI: is known, the LLR A(&) is equal related Gaussian variables and thus we obtain 

h ( d k . )  = log 

Pr{dk = 1, S k  = m, RklSk-1 = m’} 
‘ Pr{& = 0, Sk. = m, RI,/Sk-l = m‘} ’ (29) 

In order to compute the LLR A(&), as in [ 111 let us introduce 
the probability functions ak(m),  /&(m) and y z ( R k ,  m’, m) 
defined by 

Since the convolutional encoder is a deterministic machine, 
q(& = i / S k  = m,S~, - l  = m’) is equal to 0 or 1. The 
transition state probabilities r(Sk = mISk-1 = m’) of the 
trellis are defined by the encoder input statistic. Generally, 
Pr{& = 1) = Pr{dk = 0) = 112 and since there are 
two possible transitions from each state, n(Sk = m/Sk-l  = 
m’) = l / 2  for each of these transitions. 

ModGed BAHL et al. Algorithm: 
Step 0: Probabilities ao(m) are initialized according to 

condition (23) 

no(0) = 1; ao(m) = 0 vm # 0. (364 
YL(&,m’.m) = Pr{& = i ,Sk. = m, Rk/SL,l = m’}. 

Concerning the probabilities (m) , the following conditions 
(30c) were used 

Using the LLR definition (29) and (30a), (30b) and (~OC), 
A(&) is equal to 

1 
N 

P N ( m )  = -Vm 

since it is very difficult to put the turbo encoder at state 0, 
at a given time. Obviously with this condition, the last bits of 
each block are not taken into account for evaluating the BER. 

Step 1: For each observation Rk, probabilities ak(m) and 
~ ; ( R I , ,  m’, m) are computed using (32) and (34), respectively. 

Step 2:  When sequence R y  has been completely received, 
probabilities &(m) are computed using (33), and the LLR 
associated with each decoded bit d k  is computed from (31). 

Cyl (Rk:m’ :m)nk - l (m’ )Ph- (m)  

yo (RI, , m’ , m) a k  - 1 (m’)P6. (m) 

m mi 

m mi 

h ( d k : )  = log 

(31) 

where probabilities c k k ( m )  and p k ( m )  can be 
calculated from probability y; ( R k  , m’, m) as in [ 121 

1 v. EXTRINSIC INFORMATION FROM THE DECODER 
Cyi(Rk ,m’ ,m)ak- l (m’)  In this chapter, we will show that the LLR A(&) associated 

with each decoded bit d k ,  is the sum of the LLR’s of d k  at 
the decoder input and of other information called extrinsic 
information, generated by the decoder. 

Since the encoder is systematic (Xk  = d k ) ,  the transition 
probability p ( x k . / d k  = i ,  SI, = m, S k - 1  = m’) in expression 
?: ( R k ,  m’, m) is independent of state values SI, and S k - 1 .  

Pdm) = 1 * (33) Therefore we can factorize this transition probability in the 
numerator and in the denominator of (31) 

(32) 
m‘ i=o 

m(m)  = 1 1 C C~i(Rk:,m’,m)trk-i(m’) 
m mi r = O  

1 

Y i ( R k + l ,  m’, m)Pk+l(m’) 
mi i=o 

~rz(Rk.+l:m,m’)n.k(”) 
m mi Z=O 

P(Q/dk  = 1) 
P ( Z k / &  = 0) 

A ( d k )  = log 
The probability 3: ( R k ,  m’, m) can be determined from transi- 
tion probabilities of the discrete Gaussian memoryless channel 
and transition probabilities of the encoder trellis. From (~OC), 
y, (Rk,  m‘, m) is given by 

YL(Rk,m’,m) = p ( R ~ , / d k   SI, =m,S1,-1 =m‘)  
m mi 

(37) 

Conditionally to dk = 1 (resp. d ~ ,  = o), variables x k  are 
Gaussian with mean 1 (resp. -1) and variance 02,  thus the (34) 
LLR A(&) is still equal to 

where p(. , / .)  is the transition probability of the discrete Gauss- 

m,Sa-l = m’).xk and yk (Rk = (.ck,yk)) are two uncor- (38) 
ian memoryless channel. Conditionally to ( d k  = i,Sk = 2 

A ( d 1 , ) 7  xk + wk 
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feedback loop 

U 
DEMUW 

INSERTION 

Fig. 7.  Feedback decoder (under 0 internal delay assumption) 

where 

Wk = N d k )  Isi=o 

71 ( V k ,  m/. m)ak- 1 (m')P, (m) 
' (39) m mi = log 

C ? o i ? i r . m ' , m ) t r k - l ( " ) ~ k ( m )  
m mi 

Wk is a function of the redundant information introduced by 
the encoder. In general, Wk has the same sign as d k :  therefore 
Wh may improve the LLR associated with each decoded bit 
d k  . This quantity represents the extrinsic information supplied 
by the decoder and does not depend on decoder input zk. 
This property will be used for decoding the two parallel 
concatenated encoders. 

VI. DECODING SCHEME OF 
PARALLEL CONCATENATION CODES 

In the decoding scheme represented in Fig. 6, decoder 
DECl computes LLR A,(&) for each transmitted bit d k  from 
sequences {xk} and {yk}, then decoder DEC2 performs the 
decoding of sequence { d k }  from sequences {Al(dh)} and 
{ yk}. Decoder DECl uses the modified BAHL et al. algorithm 
and decoder DECz may use the VITERBI algorithm. The 
global decoding rule is not optimal because the first decoder 
uses only a fraction of the available redundant information. 
Therefore it is possible to improve the performance of this 
serial decoder by using a feedback loop. 

A. Decoding with a Feedback Loop 

Both decoders DECl and DEC2 now use the modified 
BAHL et al. algorithm. We have seen in section V that the 
LLR at the decoder output can be expressed as a sum of two 
terms if the noises at the decoder inputs are independent at 
each time k .  Hence, if the noise at the decoder DEC2 inputs 
are independent, the LLR A2 ( d k )  at the decoder DEC2 output 
can be written as 

decoded output 'c' 
4 

with 

(41) 
2 

AI(&) = 7 zlc + wik. 

From (39), we can see that the decoder DECz extrinsic infor- 
mation W z k  is a function of the sequence {A~(d,)}~+h. Since 
A, (d,) depends on observation R y  , extrinsic information 
W 2 k  is correlated with observations Xk and ylk ,  regarding 
the noise. Nevertheless, from (39), the greater In - k (  is, the 
less correlated are hi (d,) and observations xk, yk. Thus, due 
to the presence of interleaving between decoders DEC1 and 
DEC2, extrinsic information W2k and observations xk , ylk  
are weakly correlated. Therefore extrinsic information W ! k  
and observations xk, ylk can be used jointly for carrying out 
a new decoding of bit d k ,  the extrinsic information z k  = W 2 k  
acting as a diversity effect. 

In Fig. 7, we have depicted a new decoding scheme using 
the extrinsic information W 2 k  generated by decoder DECz in 
a feedback loop. For simplicity this drawing does not take into 
account the different delays introduced by decoder DECL and 
DEC2, and interleaving. 

The first decoder DECl now has three data inputs: 
(zk,&, z k ) ,  and probabilities alk(m) and / j l k ( m )  are 
computed by substituting Rk = (xk ,y lk , zk )  for Rk = 
( z k , y l k )  in (32) and (33). Taking into account that z k  is 
weakly correlated with xk and y l k  and supposing that Z A  

can be approximated by a Gaussian variable with variance 
02 # 02, the transition probability of the discrete gaussian 
memoryless channel can be now factorized in three terms 

0 

p ( R k / d k  =a,  S k  m, Sk-1 = m') 

=P(.kl.)P(?l:l.)P(.k/.). (42) 

Encoder C1 with initial rate R1, through the feedback loop, is 
now equivalent to a rate Ri encoder with 

(43) 
RI 

1 + Ri 
Ri = -. 

The first decoder obtains additional redundant information 
with Zk that may significantly improve its performance ; the 
term turbo-code is given for this feedback decoder scheme 
with reference to the Drincinle of the turbo engine. 
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Fig. 8. Decoding module (level p ) .  

With the feedback decoder, the LLR AI(&) generated by 
decoder DECl is now equal to 

where W12; depends on sequence {zn},+. As indicated 
above, information z k  has been built by decoder DEC2. 
Therefore zk must not be used as input information for decoder 
DECa. Thus decoder DEC2 input sequences will be sequences 
{AI(&))  and { Y Z ~ }  with 

Finally, from (40), decoder DEC2 extrinsic information z k  = 
W 2 k  after deinterleaving can be written as 

and the decision at the decoder DEC output is 

d k  = sign[h2(dk)]. (47) 

The decoding delays introduced by the component decoders, 
the interleaver and the deinterleaver imply that the feedback 
piece of information xk must be used through an iterative 
process. 

The global decoder circuit is made up of P pipelined 
identical elementary decoders. The pth decoder DEC (Fig. 8) 
input, is made up of demodulator output sequences ( x ) ~ ]  and 
( ~ j ) ~  through a delay line and of extrinsic information (z)?, 
generated by the ( p -  1)th decoder DEC. Note that the variance 
02 of ( z ) ~  and the variance of x l ( d k )  must be estimated at 
each decoding step p .  

For example, the variance a: is estimated for each M 2  
interleaving matrix by the following: 

where m, is equal to 

Fig. 9. BER given by iterative decoding ( p  = 1, .....18) of' a rate R = 1 / 2  
encoder, memory 11 = 4, generators GI = 37, GE = 21, with interleaving 
236 x 256. 

B. Interleaving 

The interleaver is made up of an M . M  matrix and bits { d k }  

are written row by row and read following the nonuniform rule 
given in Section 111-B2. This nonuniform reading procedure 
is able to spread the residual error blocks of rectangular 
form, that may set up in the interleaver located behind the 
first decoder DEC1, and to give a large free distance to the 
concatenated (parallel) code. 

For the simulations, a 256.256 matrix has ben used and from 
(19), the addresses of line i ,  and column j ,  for reading are 
the following: 

i, = 129(i + j )  mod . 256 
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2 3 4 5 Eb/No (dB) 
theoretical 

%I12 R=2/3 limits 

Fig. 10. BER given by iterative decoding ( p  = 1 , 2 , 3 )  of code wlth memory 
v = 4, generators GI = 23,G2 = 35, rate R = 1 / 2  and R = 2 / 3  and 
interleaving 256 x 236 decoding. 

E = ( 2  + j )  mod.  8 
j ,  = [ P ( [ )  . ( j  + l)] ~ 1 mod 256 (494  

with 

P ( 0 )  = 17; P(1) = 37; P(2)  = 19; P(3)  = 29 
P(4) -41; P (5 )  = 23; P (6 )  = 13; P(7)  = 7. 

(49b) 

VII. RESULTS 

For a rate R = 1/2 encoder with memory u = 4, and 
for generators GI = 37,Gz = 21 and parallel concatenation 
2/3//2/3 (R1 = 2 / 3 ,  R2 = 2 / 3 ) .  the BER has been computed 
after each decoding step using the Monte Carlo method, as 
a function of signal to noise ratio &/No.  The interleaver 
consists of a 256 x 256 matrix and the modified BAHL et 

Normalized -1 0 +I +2 
samples 

Fig. 11. 
Eb/Ko = 0.8 dB; all information bits di, 

Histograms o l  extrinsic information 51; after iterations # I ,  4, 13 at 
1. 

al. algorithm has been used with a data block length of 
N = 65 536 bits. In order to evaluate a BER equal to lop5 ,  we 
have considered 256 data blocks i.e. approximately 16 x lo6 b 
&. The BER versus &/No, for different values of p is plotted 
in Fig. 9. For any given SNR greater than 0 dB, the BER 
decreases a3 a function of the decoding step p .  The coding gain 
is fairly high for the first values of p ( p  = 1,2 ,3)  and carries 
on increasing for the subsequent values of p .  For p = 18 for 
instance, the BER is lower than lop5  at &/NO = 0.7 dB with 
generators GI = 3 7 , G ~  = 21. Remember that the Shannon 
limit for a binary modulation is P, = 0 (several authors 
take P, = as a reference) for &/No = 0 dB. With 
the parallel concatenation of RSC convolutional codes and 
feedback decoding, the performance is 0.7 dB from Shannon’s 
limit. The influence of the memory u on the BER has also been 
examined. For memory greater than 4, at &/No = 0.7 dB, 
the BER is slightly worse at the first (p = 1) decoding step 
and the feedback decoding is inefficient to improve the final 
BER. For u smaller than 4, at &/No = 0.7 dB, the BER is 
slightly better at the first decoding step than for v equal to 
four, but the correction capacity of encoders C1 and C2 is too 
weak to improve the BER with feedback decoding. For v = 3 
(Le., with only eight-states decoders) and after iteration 18, a 
BER of lo-’ is achieved at &/No = 0.9 dB. 

For I/ equal to 4, we have tested several generators (GI, Gz) 
and the best results were achieved with (21 = 3 7 , G ~  = 21 
and at least six iterations ( p  2 6). For p smaller than four, 
generators GI = 23, Gz = 35 lead to better performance than 
generators G1 = 37, Gz = 21, at large SNR’s (Fig. lo). This 
result can be understood since, with generators GI = 23,  G2 = 
35, the first coefficients WRSC($) are smaller than with 
generators GI = 37, GZ = 21. For very low SNR’s, the BER 
can sometimes increase during the iterative decoding process. 
In order to overcome this effect the extrinsic information z k  

has been divided by [I + fIIfl(&)\].fI acts as a stability factor 
and its value of 0.15 was adopted after several simulation 
tests at &/NO = 0.7 dB. 

We have also plotted the BER for a rate R = 2 / 3  encoder 
with memory u = 4, generators GI = 23,Gz = 35 and 
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parallel concatenation 4l5lI4l5 in Fig. 10. For a nonuniform 
interleaver consisting of a 256 x 256 matrix and for p = 3,  
the BER is equal to lop5  at Eb/No = 1.6 dB and thus the 
performance is only 1 dB from Shannon’s limit. 

In Fig. 11, the histogram of extrinsic information ( z ) ~  
(generators GI = 37,Gz = 21.) has been drawn for several 
values of iteration p ,  with all bits equal to one and for a low 
SNR (&/No = 0.8 dB). For p = 1 (first iteration), extrinsic 
information ( z ) ~  is very poor about bit d k ,  and furthermore, 
the gaussian hypothesis made above for extrinsic information 
(z),, is not satisfied! Nevertheless, when iteration p increases, 
the histogram merges toward a Gaussian law with a mean equal 
to one, after normalization. For instance, for p = 13, extrinsic 
information ( z ) ,  becomes relevant information concerning bits 
dk: . 

Note that the concept of turbo-codes has been recently 
extended to block codes, in particular by Pyndiah et al. [13]. 
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